
GPU-Based Real-time N-1 AC Power Flow
Algorithm With Preconditioned Iterative Method

Kunjie Tang, Shufeng Dong
College of Electrical Engineering

Zhejiang University
Hangzhou, China

tangkunjie1994@163.com

Bingquan Zhu, Qiulong Ni
Power Dispatch and Control Center

Zhejiang Electric Power Corporation
Hangzhou, China

Yonghua Song
College of Electrical Engineering

Zhejiang University
Hangzhou, China

Abstract—With the expansion of scale of power system, in
order to satisfy the real-time and accuracy requirements of N-1
security, a GPU based real-time N-1 AC power flow algorithm
with preconditioned iterative method was proposed. This
algorithm concatenated independent power flow problems into
one. The concatenated Jacobi matrix was formed by parallel
processing, and the linear equations were solved by the direct
method or the iterative method according to the scale of
equations. The iterative method was designed and parallelly
processed based on preconditioning method ILU(0) and Krylov
theory. The case analysis shows that, the proposed algorithm has
high efficiency, high accuracy and needs small memory footprint,
which could be applied to engineering practice.

Index Terms—N-1 security; GPU-CPU computing framework;
parallel processing; concatenation algorithm; iterative method

I. INTRODUCTION
With expansion of scale of power system, the static security

problem is becoming more and more severe. Contingency
simulation, especially N-1 security is an important means for
stability analysis. Since N-1 security is used for real-time
security analysis and decision-making support, N-1 power flow
calculation has a high demand for computing accuracy and
speed, especially in large scale system.

DC power flow method and sensitivity analysis method are
widely used in N-1 security at present because of their high
calculating speed [1-2]. DC power flow method simplifies the
power flow model, and has no convergence problem.
Sensitivity analysis method is based on the normal connection
and normal operation mode, and there is no need to solve each
power flow problem iteratively. Although recent researches
have been studies on improving accuracy of these two methods,
there are still some defects and limitations in practical
applications because of the approximation of the methods
themselves, especially in some circumstances requiring high
computational accuracy [3].

Therefore, in order to ensure the accuracy of N-1 power
flow calculation, a high-speed AC power flow method is an
urgent need. Traditional methods such as Newton-Raphson
method (hereinafter referred to as N-R method), via repeated
iterating, forming Jacobi matrices and solving modified

equations, suffers from large amount and slow speed of
calculation, especially in large scale systems.

In recent years, with the rapid development of GPU, GPU-
CPU computing framework capable of powerful parallel
computing ability has been applied to scientific researches and
engineering applications of many disciplines. In the AC power
flow method, solving sparse linear equations occupy most of
computation time, some researchers using GPU to accelerate
solving process has achieved initial achievements [4-5].
However, these achievements mainly focus the parallel
processing of direct methods and some traditional iterative
methods, e.g. Gauss-Seidel method, having not deeply studied
on the new iterative methods and preprocessing techniques.
The residual time of solving equations is mainly for Jacobi
matrix formation, and parallel acceleration of Jacobi matrix
formation needs further study.

In consideration of above problems, N-R method is used to
improve the calculation accuracy. On the basis of GPU-CPU
computing framework, a concatenation algorithm for N-1 AC
power flow (ACPF) is proposed to satisfy the real-time and
accuracy requirement of N-1 security. This algorithm
concatenates all independent power flow problems into one,
which means that N-R method will be used only once,
improving computational efficiency. Meanwhile, one iterative
method, based on Krylov theory and ILU(0) preconditioning,
plus parallel processing by GPU is proposed to solve
concatenated large-scale equations. In addition, the formation
of concatenated Jacobi matrix is also processed parallelly
executing on GPU. The case analysis shows that, the proposed
algorithm has high efficiency, high accuracy and needs small
memory space, which could be applied to engineering practice.

II. CONCATENATION ALGORITHM FOR N-1 SECURITY
N-R method is a logical and sequential algorithm, while

GPU is only suitable for situations that computation is
intensive but with simple logic, which indicates that using
GPU to parallelly solve every independent power flow problem
in the N-1 security with N-R method is not feasible. In addition,
memory of GPU is limited, and GPU cannot communicate
directly with CPU. Executing the complete N-R method on
GPU needs lots of space, which is not realistic. Based on this, a
concatenation algorithm is proposed.

978-1-5386-7703-2/18/$31.00 ©2018 IEEEAuthorized licensed use limited to: Zhejiang University. Downloaded on May 15,2024 at 07:35:02 UTC from IEEE Xplore. Restrictions apply.

N-1 ACPF needs to respectively iterate to solve the
independent problems in the case of each transmission line and
transformer branch being removed. When scale of nodes and
branches is large, the number of independent problems is large
too. The concatenation algorithm is proposed to reduce the
computational time by reducing the times of using N-R method.

Assumed that a system, via connectivity check, has n
transmission lines or transformer branches need to do
contingency analysis. If N-R method is used for the case of
each branch removed, such equations need to be solved for
branch k removed:

 (1)ki
ki ki k

ki
i p

 
   

 

P
J X

Q
 

kiP , kiQ , kiJ and kiX respectively represent node
active power injection correction vector, node reactive power
injection correction vector, Jacobi matrix and solution of
modified equations in the i-th iteration for the case of branch k
removed. If the problem converges and iteration times are
below than the preset maximum iteration times, pk represents
iteration times for the case of branch k removed, or it is equal
to the preset maximum iteration times.

The accuracy of Newton-Raphson is gradually increasing
with the increment of iteration times. If the iteration times for
the case of any branch removed is set as P, and:

 1 2 1max{ , , , , }k kP p p p p  

Then, in the case of branch k removed, such equations need
to solve:

 (1)ki
ki ki

ki
i P

 
   

 

P
J X

Q
 

In order to reduce times of N-R method used during the N-
1 security process, the node power injection correction vectors
and Jacobi matrices can be concatenated respectively.
According to the linear algebra theory, such equations need to
solve:



1

1

2 11

2 2 2 (1)

i

i

i ii

i i i

ni ni

ni

ni

i P

 
 

 
    
    
          
    
      
 

 
  

P
Q
P YJ
Q J Y

J Y
P
Q

 

The solutions of the above equations satisfy:

 (1 ,1)ki ki i P k n    Y X  

It can be seen that the concatenated power flow problem
needs N-R method solving for only once. However, the scale
of the new problem will be much larger than the independent
problems, which means that when the scale is large enough,
using direct method such as LU decomposition to solve
equations needs to take a long time. Thus, matrix preprocessing
technique, iterative method and parallel processing can be used
to accelerate equations solving, which will be discussed in
detail in Section IV. Section V-C further proves that the
concatenation algorithm has higher computational efficiency
than solving the independent problems one by one.

III. ACCELERATION OF LINEAR EQUATIONS SOLVING

A. Feature Analysis of Concatenated Linear Equations
When scale of a system is small, the scale of concatenated

linear equations is also small, and direct method, such as LU
decomposition, can be adopted to solve the equations. LU
decomposition can be implemented by some mature libraries
like SuperLU [6]. However, when scale of a system is large,
the concatenated Jacobi matrix is large, sparse and asymmetric,
and the condition number of the matrix is much larger than 1.
The large scale of the system makes the direct method difficult
to satisfy computing requirement, so that the iterative method
is one of the important approaches to solve large-scale linear
equations. In addition, due to the large condition number, it is
necessary to select stable iterative methods as well as
appropriate preprocessing techniques. The cut-off point of the
direct method and the iterative method needs to be further
determined by cases.

B. An Iterative Method with Incomplete LU Decomposition
Preprocessing Based on Krylov Subspace Theory
The iterative method based on Krylov subspace theory is a

kind of important iterative method for solving large linear
equations [7]. The general projection method for solving linear
equations like Ax b is to seek an approximate solution xm
from the m-dimensional affine subspace x0 + Km (called search
space), which uses the Petrov-Galerkin condition:

 m m b Ax L  

In this expression, Lm is another m-dimensional subspace
(called constraint space). Here, x0 represents one initial guess
of the solution. Krylov subspace means the subspace Km


2 (1)(,) { , , , , }m

m span A v v Av A v A vK  

v can be chosen as the initial residual r0. Meanwhile, the
choice of constraint space Lm will have important influence on
the iterative method. In this paper, considering that the
concatenated Jacobi matrix is asymmetric, the biorthogonal
method, e.g. the stabilized biorthogonal conjugate gradient
(BICGSTAB) method, can be applied, and let:

Authorized licensed use limited to: Zhejiang University. Downloaded on May 15,2024 at 07:35:02 UTC from IEEE Xplore. Restrictions apply.

  0, T
m m rL K A  

The specific steps of the iterative method proposed in this
paper are shown as follows:

• (a) First, use the ILU(0) decomposition to obtain the
preconditioner M, which is a matrix. Processing speed
of ILU(0) preconditioning is fast, and it will not create
non-zero element injection jeopardizing sparsity of the
coefficient matrix [8].

• (b) Take the initial guess of X x0, and tolerance ε，to
calculate 0 0 r b Jx . Let *

0 0r r , 1j  .

• (c) Calculate 1
*

01 (,)j j   r r . If 1 0j   , the method

fails, otherwise go to Step (d)。
• (d) If 1j  , let 1j jp r , otherwise, let

1 1 2 1 1(/)(/)j j j j j         , 1j j p r

1 1 1 1()j j j j    p  .

• (e) Solve jM p p to obtain p , and calculate

j  J p , 1
*

0/ (,)j jj   v r , 1j j j s r  .

• (f) If s , let 1j j j x x p , and exit iterations.

• (g) Solve jM s s to obtain s , let t J s ,

(,) / (,)j  s t t t , 1j j j j   x x p s .

• (h) If xj satisfies accuracy requirement, exit iterations,
otherwise, let j j r s t , 1j j  . Go to Step (c).

Obviously, the main forms of computation of the iterative
method proposed above include matrix-vector multiplication,
inner product operation, etc., which all have natural parallelism.
Parallel processing with GPU can improve the efficiency of the
iterative method.

IV. PARAELLEL FORMATION OF JACOBI MATRIX
The formation of Jacobi matrix is another time-consuming

step, so that GPU parallel acceleration of Jacobi matrix
formation is considered.

A. Parallelism Analysis
In the power flow calculation, in polar coordinates, the

Jacobi matrix can be expressed as:


 

  
 

H N
J

F L
 

Considering the similarity among these four sub-matrices,
the matrix H can be taken as an example:


2

(sin cos)i j ij ij ij ij
ij

i ii i

U U G B i j
H

Q B U i j

   
 

 

 

Qi and Ui respectively represents passive power injection
and magnitude of voltage of node i. δij represents phase
difference between node i and node j. Gij and Bij represents
transconductance and transsusceptance of node i and node j. Bii
represents self-susceptance of node i.

Expression (7) shows that, every element in the Jacobi
matrix is only related to the node admittance, phase difference
between two nodes, node voltage and node power injection.
There is no dependency between any two elements, so that the
formation of Jacobi matrix is naturally parallelizable.

On the other hand, the power flow problems under different
contingencies are independent, which indicates that formation
of corresponding Jacobi matrices can also be formed in parallel.

B. Concatenation Method in Parellel
1) Sparsity Technology and Storage of the Jacobi Matrix

Considering that the concatenated Jacobi matrix is a sparse
matrix, sparsity storage technology can be used to store the
Jacobi matrix to save storage space. Take IEEE standard
CASE4 as an example, then the position of non-zero elements
of original Jacobi matrix is shown on the left side in Fig. 1. If
using CSR (Compressed Sparse Row) format [9], then
concatenated Jacobi matrix will be stored in the way shown on
the right side in Fig. 1.

Fig. 1. Concatenation and CSR format storage of Jacobi matrix

Authorized licensed use limited to: Zhejiang University. Downloaded on May 15,2024 at 07:35:02 UTC from IEEE Xplore. Restrictions apply.

2) Parellel Formation Method
According to the analysis in Section III-A, the row offset

array, column index array and value array can be generated
respectively in parallel by GPU.

a) Parellel Formation of Row Offset Array
The threads with consecutive number in one thread block

are arranged to calculate the row offsets, in the concatenated
Jacobi matrix, of elements in the same position belonging to
different independent power flow problems. Set the number of
enabled blocks equal to the order of the Jacobi matrix of the
original power flow problem, and set the number of enabled
threads in each block equal to the number of elements in the
check set.

b) Parellel Formation of Column Index and Value Array
Column index array shares the same length with value array.

The threads with consecutive number in one thread block are
arranged to calculate the column indices and values, in the
concatenated Jacobi matrix, of elements in the same position
belonging to different independent power flow problems. Set
the number of enabled blocks equal to the number of non-zero
elements of the Jacobi matrix of the original power flow
problem, and set the number of enabled threads in each block
equal to the number of elements in the check set.

In the process of calculation, according to the fact that the
Jacobi matrix in the case of one branch removed shares the
identical structure with the Jacobi matrix of original power
flow problem, the recorded positions of non-zero elements
during the formation of original Jacobi matrix can be used to
calculate the column index conveniently. On the other hand,
after updating elements related to the removed branch in the
node admittance matrix, value array can be obtained by using
the formula for calculating a Jacobi matrix.

V. STEPS OF REAL-TIME N-1 ACPF ALGORITHM
The algorithm applies GPU-CPU computing framework,

divided into GPU processing part and CPU processing part.
CPU processes set of iterative initial value, formation of node
admittance matrix, formation of check set, correction of
iterative value, convergence judgement, etc., while GPU
processes concatenation of Jacobi matrix. Modified equations
are solved by CPU or GPU according to scale of equations, in
order to achieve the purpose of fast solving. The detailed steps
of the algorithm are as follows:

• (a) CPU: Input data of a system and set the tolerance
and maximum iteration times of N-R method.

• (b) CPU: Form the node admittance matrix and the
Jacobi matrix in the first iteration of the power flow
problem in the normal operation. Record the position
of nonzero elements in the Jacobi matrix.

• (c) CPU: Check the connectivity when each branch
removed, and form the check set S, of which number
of set elements is n.

• (d) CPU: Set the initial values of iteration variables,
and set iteration times 0i  .

• (e) GPU: According to the results from Step (b) and
Step (c), using acceleration approach discussed in

Section II-A and N-R method, to form concatenated
Jacobi matrix and node power injection correction
vector. Then, modified equations are obtained.

• (f) CPU or GPU: According to the scale of modified
equations, use a suitable approach to solve.

• (g) CPU: Do converge judgement of N-R method
using solutions in Step (f). If accuracy demand is
satisfied, the algorithm is converged and exit the
algorithm. Otherwise, correct iterative values.

• (h) CPU: Let iteration times 1i i  . If the number
has reached the maximum iteration times preset, the
algorithm is not converged and exit the algorithm.
Otherwise, go to Step (e).

VI. CASE ANALYSIS
IEEE standard cases as well as ‘BENCH’ (1648 nodes) and

‘Coal 2005 NI TP’ (610 nodes) from PSS\E are taken as
examples for test. The compiler is Microsoft Visual Studio
2013 Update 3 and NVIDIA Nsight Visual Studio Edition, and
the program runs on the Windows 10 of 64 bits. The CPU
model in the test is Intel Core i7-7700K, with 4.20GHz master
frequency and 32GB memory. The GPU model is NVIDIA
GeForce GTX1080, supporting CUDA8.0. Set the maximum
iteration times of N-R method to 10, and set the tolerance to
0.01. The iterative method requires accuracy of 1e-6.

A. Acceleration Effect Analysis of Parallel Formation of
Jacobi Matrix
Cmpare the computing time of the parallel formation with

that of serial formation of the Jacobi matrices for every
independent power flow problem. Data in Fig.2 is the average
computing time of 10 times.

Fig. 2. Acceleration effect analysis of parallel formation of Jacobi matrix

As can be seen in Fig.2, the parallel formation method
proposed in this paper has significant acceleration effect.
Especially when the scale of system is large, such as Coal 2005
NI TP and BENCH, the speed-up ratio can reach around 40
times. In the N-1 security, it is necessary to form the Jacobi
matrix for several times, and the acceleration effect of parallel
formation can produce cumulative effect.

B. Comparison of Computing Time of Different Methods and
the Choice of Method for Solving Linear Equations
The concatenated equations are solved by the direct method

based on SuperLU library, or the iterative method based on the

Authorized licensed use limited to: Zhejiang University. Downloaded on May 15,2024 at 07:35:02 UTC from IEEE Xplore. Restrictions apply.

Krylov subspace theory proposed in this paper, according to
the scale of equations. Data in Fig.3 is the average computing
time of 10 times.

Fig. 3. Comparison of computing time of methods for solving linear equations

According to Fig. 3, 35,000 is the dividing point of the
computing time of these two methods. Moreover, the larger the
scale of Jacobi matrix, the more obvious the advantage in
speed of the iterative method. Therefore, 35,000 can be chosen
as the cut-off point of direct method and iterative method.

C. Overall Computational Efficiency Analysis of the Algorithm
In order to test the overall efficiecy of the proposed

algorithm, make a comparison between the algorithm proposed
in this paper and traditional N-1 AC power flow algorithm
(Solve every independent power flow problem one by one).

Fig. 4. Comparison of computing time of traditional method and the algorithm

proposed in this paper
Fig.4 shows that the algorithm proposed in the paper can

achieve significant acceleration. When the scale of system is
large, the speed-up ratio is more than 100 times. Moreover, the
larger the scale of system is, the more significant the
acceleration effect of the algorithm proposed in the paper.

D. Memory Footprint of the Algorithm

TABLE I shows that, when the system has 1648 nodes, the
peak value of RAM memory is only 1.69GB, and the peak
value of GPU memory is 2.42GB, which a GPU with 4GB
memory can support.

TABLE I. MEMORY FOOTPRINT OF THE ALGORITHM

Cases
Order of

Concatenated Jacobi
Matrix

Peak Value of
RAM Memory

/MB

Peak Value of
GPU Memory

/MB

CASE118 32037 390.0 1606.0

CASE300 169600 590.3 1606.0

Coal 2005 164889 422.3 1606.0

BENCH 2272284 1730.9 2478.0

VII. CONCLUSION
This paper proposed a real-time N-1 ACPF algorithm based

on concatenation method and GPU-CPU computing framework.
This algorithm has higher accuracy than DC power flow
method and sensitivity analysis method. The concatenation
method concatenates all the independent power flow problems,
which means that N-R method will be used only once. GPU is
used to parallelly process the formation of Jacobi matrix and
iterative method for solving large scale linear equations,
effectively improving the overall efficiency of the algorithm.
Moreover, the algorithm needs small memory space, which can
be supported by CPU and GPU equipped by a common PC.
Therefore, this algorithm has engineering application value.

REFERENCES
[1] D. Van Hertem, J. Verboomen, K. Purchala, R. Belmans and W.

L. Kling, "Usefulness of DC power flow for active power flow
analysis with flow controlling devices," The 8th IEE
International Conference on AC and DC Power Transmission,
London, UK, 2006, pp. 58-62.

[2] DU Zhengwang，HA Hengxu，SONG Yang，DUAN Yujing
and HU Xitong, “New algorithm based on the sensitivity and the
compensation methods for line-outage problem of power
network,” Power System Protection and Control. China, vol.38,
pp. 103-107, August 2010.

[3] ZHAO Jinquan, YE Junling and DENG Yong, “Comparative
Analysis on DC Power Flow and AC Power Flow,” Power
System Technology. China, vol.36, pp. 147-152, October 2012.

[4] J. Singh and I. Aruni, "Accelerating Power Flow studies on
Graphics Processing Unit," 2010 Annual IEEE India Conference
(INDICON), Kolkata, 2010, pp. 1-5.

[5] Li, Xue, F. Li, and J. M. Clark, "Exploration of multifrontal
method with GPU in power flow computation." IEEE Power
and Energy Society General Meeting, Vancouver, Canada, 2013,
pp. 1-5.

[6] P. Sao, X. Liu, R. Vuduc and X. Li, "A Sparse Direct Solver for
Distributed Memory Xeon Phi-Accelerated Systems," 2015
IEEE International Parallel and Distributed Processing
Symposium, Hyderabad, India, 2015, pp. 71-81.

[7] R. Idema, D. J. P. Lahaye, C. Vuik and L. van der Sluis,
"Scalable Newton-Krylov Solver for Very Large Power Flow
Problems," IEEE Transactions on Power Systems, vol. 27, no. 1,
pp. 390-396, Feb. 2012.

[8] B. Yang, H. Liu, Z. Chen and X. Tian, "GPU-Accelerated
Preconditioned GMRES Solver," IEEE International
Conference on Big Data Security on Cloud, New York, USA,
2016, pp.280-285.

[9] J. L. Greathouse and M. Daga, "Efficient Sparse Matrix-Vector
Multiplication on GPUs Using the CSR Storage Format," SC14:
International Conference for High Performance Computing,
Networking, Storage and Analysis, New Orleans, LA, 2014, pp.
769-780.

Authorized licensed use limited to: Zhejiang University. Downloaded on May 15,2024 at 07:35:02 UTC from IEEE Xplore. Restrictions apply.

