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Abstract—With the expansion of scale of power system, in 
order to satisfy the real-time and accuracy requirements of N-1 
security, a GPU based real-time N-1 AC power flow algorithm 
with preconditioned iterative method was proposed. This 
algorithm concatenated independent power flow problems into 
one. The concatenated Jacobi matrix was formed by parallel 
processing, and the linear equations were solved by the direct 
method or the iterative method according to the scale of 
equations. The iterative method was designed and parallelly 
processed based on preconditioning method ILU(0) and Krylov 
theory. The case analysis shows that, the proposed algorithm has 
high efficiency, high accuracy and needs small memory footprint, 
which could be applied to engineering practice.  

Index Terms—N-1 security; GPU-CPU computing framework; 
parallel processing; concatenation algorithm; iterative method 

I. INTRODUCTION 
With expansion of scale of power system, the static security 

problem is becoming more and more severe. Contingency 
simulation, especially N-1 security is an important means for 
stability analysis. Since N-1 security is used for real-time 
security analysis and decision-making support, N-1 power flow 
calculation has a high demand for computing accuracy and 
speed, especially in large scale system.  

DC power flow method and sensitivity analysis method are 
widely used in N-1 security at present because of their high 
calculating speed [1-2]. DC power flow method simplifies the 
power flow model, and has no convergence problem. 
Sensitivity analysis method is based on the normal connection 
and normal operation mode, and there is no need to solve each 
power flow problem iteratively. Although recent researches 
have been studies on improving accuracy of these two methods, 
there are still some defects and limitations in practical 
applications because of the approximation of the methods 
themselves, especially in some circumstances requiring high 
computational accuracy [3]. 

Therefore, in order to ensure the accuracy of N-1 power 
flow calculation, a high-speed AC power flow method is an 
urgent need. Traditional methods such as Newton-Raphson 
method (hereinafter referred to as N-R method), via repeated 
iterating, forming Jacobi matrices and solving modified 

equations, suffers from large amount and slow speed of 
calculation, especially in large scale systems.  

In recent years, with the rapid development of GPU, GPU-
CPU computing framework capable of powerful parallel 
computing ability has been applied to scientific researches and 
engineering applications of many disciplines. In the AC power 
flow method, solving sparse linear equations occupy most of 
computation time, some researchers using GPU to accelerate 
solving process has achieved initial achievements [4-5]. 
However, these achievements mainly focus the parallel 
processing of direct methods and some traditional iterative 
methods, e.g. Gauss-Seidel method, having not deeply studied 
on the new iterative methods and preprocessing techniques. 
The residual time of solving equations is mainly for Jacobi 
matrix formation, and parallel acceleration of Jacobi matrix 
formation needs further study. 

In consideration of above problems, N-R method is used to 
improve the calculation accuracy. On the basis of GPU-CPU 
computing framework, a concatenation algorithm for N-1 AC 
power flow (ACPF) is proposed to satisfy the real-time and 
accuracy requirement of N-1 security. This algorithm 
concatenates all independent power flow problems into one, 
which means that N-R method will be used only once, 
improving computational efficiency. Meanwhile, one iterative 
method, based on Krylov theory and ILU(0) preconditioning, 
plus parallel processing by GPU is proposed to solve 
concatenated large-scale equations. In addition, the formation 
of concatenated Jacobi matrix is also processed parallelly 
executing on GPU. The case analysis shows that, the proposed 
algorithm has high efficiency, high accuracy and needs small 
memory space, which could be applied to engineering practice. 

II. CONCATENATION ALGORITHM FOR N-1 SECURITY 
N-R method is a logical and sequential algorithm, while 

GPU is only suitable for situations that computation is 
intensive but with simple logic, which indicates that using 
GPU to parallelly solve every independent power flow problem 
in the N-1 security with N-R method is not feasible. In addition, 
memory of GPU is limited, and GPU cannot communicate 
directly with CPU. Executing the complete N-R method on 
GPU needs lots of space, which is not realistic. Based on this, a 
concatenation algorithm is proposed. 
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N-1 ACPF needs to respectively iterate to solve the 
independent problems in the case of each transmission line and 
transformer branch being removed. When scale of nodes and 
branches is large, the number of independent problems is large 
too. The concatenation algorithm is proposed to reduce the 
computational time by reducing the times of using N-R method. 

Assumed that a system, via connectivity check, has n 
transmission lines or transformer branches need to do 
contingency analysis. If N-R method is used for the case of 
each branch removed, such equations need to be solved for 
branch k removed: 
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kiP , kiQ , kiJ  and kiX  respectively represent node 
active power injection correction vector, node reactive power 
injection correction vector, Jacobi matrix and solution of 
modified equations in the i-th iteration for the case of branch k 
removed. If the problem converges and iteration times are 
below than the preset maximum iteration times, pk represents 
iteration times for the case of branch k removed, or it is equal 
to the preset maximum iteration times. 

The accuracy of Newton-Raphson is gradually increasing 
with the increment of iteration times. If the iteration times for 
the case of any branch removed is set as P, and: 

 1 2 1max{ , , , , }k kP p p p p  

Then, in the case of branch k removed, such equations need 
to solve: 
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In order to reduce times of N-R method used during the N-
1 security process, the node power injection correction vectors 
and Jacobi matrices can be concatenated respectively. 
According to the linear algebra theory, such equations need to 
solve: 
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The solutions of the above equations satisfy: 

 (1 ,1 )ki ki i P k n    Y X  

It can be seen that the concatenated power flow problem 
needs N-R method solving for only once. However, the scale 
of the new problem will be much larger than the independent 
problems, which means that when the scale is large enough, 
using direct method such as LU decomposition to solve 
equations needs to take a long time. Thus, matrix preprocessing 
technique, iterative method and parallel processing can be used 
to accelerate equations solving, which will be discussed in 
detail in Section IV.  Section V-C further proves that the 
concatenation algorithm has higher computational efficiency 
than solving the independent problems one by one. 

III. ACCELERATION OF LINEAR EQUATIONS SOLVING 

A. Feature Analysis of Concatenated Linear Equations 
When scale of a system is small, the scale of concatenated 

linear equations is also small, and direct method, such as LU 
decomposition, can be adopted to solve the equations. LU 
decomposition can be implemented by some mature libraries 
like SuperLU [6]. However, when scale of a system is large, 
the concatenated Jacobi matrix is large, sparse and asymmetric, 
and the condition number of the matrix is much larger than 1. 
The large scale of the system makes the direct method difficult 
to satisfy computing requirement, so that the iterative method 
is one of the important approaches to solve large-scale linear 
equations. In addition, due to the large condition number, it is 
necessary to select stable iterative methods as well as 
appropriate preprocessing techniques. The cut-off point of the 
direct method and the iterative method needs to be further 
determined by cases. 

B. An Iterative Method with Incomplete LU Decomposition 
Preprocessing Based on Krylov Subspace Theory 
The iterative method based on Krylov subspace theory is a 

kind of important iterative method for solving large linear 
equations [7]. The general projection method for solving linear 
equations like Ax b is to seek an approximate solution xm 
from the m-dimensional affine subspace x0 + Km (called search 
space), which uses the Petrov-Galerkin condition: 

 m m b Ax L  

In this expression, Lm is another m-dimensional subspace 
(called constraint space). Here, x0 represents one initial guess 
of the solution. Krylov subspace means the subspace Km 


2 ( 1)( , ) { , , , , }m

m span A v v Av A v A vK  

v can be chosen as the initial residual r0. Meanwhile, the 
choice of constraint space Lm will have important influence on 
the iterative method. In this paper, considering that the 
concatenated Jacobi matrix is asymmetric, the biorthogonal 
method, e.g. the stabilized biorthogonal conjugate gradient 
(BICGSTAB) method, can be applied, and let: 
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The specific steps of the iterative method proposed in this 
paper are shown as follows: 

• (a) First, use the ILU(0) decomposition to obtain the 
preconditioner M, which is a matrix. Processing speed 
of ILU(0) preconditioning is fast, and it will not create 
non-zero element injection jeopardizing sparsity of  the 
coefficient matrix [8].     

• (b) Take the initial guess of X x0, and tolerance ε，to 
calculate 0 0 r b Jx . Let *

0 0r r , 1j  . 

• (c) Calculate 1
*

01 ( , )j j   r r . If 1 0j   , the method 

fails, otherwise go to Step (d)。 
• (d) If 1j  , let 1j jp r , otherwise, let 

1 1 2 1 1( / )( / )j j j j j         , 1j j p r  

1 1 1 1( )j j j j    p  . 

• (e) Solve jM p p to obtain p , and calculate 

j  J p , 1
*

0/ ( , )j jj   v r , 1j j j s r  . 

• (f) If  s , let 1j j j x x p , and exit iterations. 

• (g) Solve jM s s  to obtain s , let t J s , 

( , ) / ( , )j  s t t t , 1j j j j   x x p s . 

• (h) If xj satisfies accuracy requirement, exit iterations, 
otherwise, let j j r s t , 1j j  . Go to Step (c). 

Obviously, the main forms of computation of the iterative 
method proposed above include matrix-vector multiplication, 
inner product operation, etc., which all have natural parallelism. 
Parallel processing with GPU can improve the efficiency of the 
iterative method. 

IV. PARAELLEL FORMATION OF JACOBI MATRIX 
The formation of Jacobi matrix is another time-consuming 

step, so that GPU parallel acceleration of Jacobi matrix 
formation is considered. 

A. Parallelism Analysis 
In the power flow calculation, in polar coordinates, the 

Jacobi matrix can be expressed as: 


 

  
 

H N
J

F L
 

Considering the similarity among these four sub-matrices, 
the matrix H can be taken as an example: 


2
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H
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Qi and Ui respectively represents passive power injection 
and magnitude of voltage of node i. δij represents phase 
difference between node i and node j. Gij and Bij represents 
transconductance and transsusceptance of node i and node j. Bii 
represents self-susceptance of node i. 

Expression (7) shows that, every element in the Jacobi 
matrix is only related to the node admittance, phase difference 
between two nodes, node voltage and node power injection. 
There is no dependency between any two elements, so that the 
formation of Jacobi matrix is naturally parallelizable. 

On the other hand, the power flow problems under different 
contingencies are independent, which indicates that formation 
of corresponding Jacobi matrices can also be formed in parallel.  

B. Concatenation Method in Parellel 
1) Sparsity Technology and Storage of the Jacobi Matrix 

Considering that the concatenated Jacobi matrix is a sparse 
matrix, sparsity storage technology can be used to store the 
Jacobi matrix to save storage space. Take IEEE standard 
CASE4 as an example, then the position of non-zero elements 
of original Jacobi matrix is shown on the left side in Fig. 1. If 
using CSR (Compressed Sparse Row) format [9], then 
concatenated Jacobi matrix will be stored in the way shown on 
the right side in Fig. 1.  

 
Fig. 1. Concatenation and CSR format storage of Jacobi matrix
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2) Parellel Formation Method 
According to the analysis in Section III-A, the row offset 

array, column index array and value array can be generated 
respectively in parallel by GPU.  

a) Parellel Formation of Row Offset Array 
The threads with consecutive number in one thread block 

are arranged to calculate the row offsets, in the concatenated 
Jacobi matrix, of elements in the same position belonging to 
different independent power flow problems. Set the number of 
enabled blocks equal to the order of the Jacobi matrix of the 
original power flow problem, and set the number of enabled 
threads in each block equal to the number of elements in the 
check set. 

b) Parellel Formation of Column Index and Value Array 
Column index array shares the same length with value array. 

The threads with consecutive number in one thread block are 
arranged to calculate the column indices and values, in the 
concatenated Jacobi matrix, of elements in the same position 
belonging to different independent power flow problems. Set 
the number of enabled blocks equal to the number of non-zero 
elements of the Jacobi matrix of the original power flow 
problem, and set the number of enabled threads in each block 
equal to the number of elements in the check set. 

In the process of calculation, according to the fact that the 
Jacobi matrix in the case of one branch removed shares the 
identical structure with the Jacobi matrix of original power 
flow problem, the recorded positions of non-zero elements 
during the formation of original Jacobi matrix can be used to 
calculate the column index conveniently. On the other hand, 
after updating elements related to the removed branch in the 
node admittance matrix, value array can be obtained by using 
the formula for calculating a Jacobi matrix. 

V. STEPS OF REAL-TIME N-1 ACPF ALGORITHM 
The algorithm applies GPU-CPU computing framework, 

divided into GPU processing part and CPU processing part. 
CPU processes set of iterative initial value, formation of node 
admittance matrix, formation of check set, correction of 
iterative value, convergence judgement, etc., while GPU 
processes concatenation of Jacobi matrix. Modified equations 
are solved by CPU or GPU according to scale of equations, in 
order to achieve the purpose of fast solving. The detailed steps 
of the algorithm are as follows: 

• (a) CPU: Input data of a system and set the tolerance 
and maximum iteration times of N-R method. 

• (b) CPU: Form the node admittance matrix and the 
Jacobi matrix in the first iteration of the power flow 
problem in the normal operation. Record the position 
of nonzero elements in the Jacobi matrix. 

• (c) CPU: Check the connectivity when each branch 
removed, and form the check set S, of which number 
of set elements is n. 

• (d) CPU: Set the initial values of iteration variables, 
and set iteration times 0i  . 

• (e) GPU: According to the results from Step (b) and 
Step (c), using acceleration approach discussed in 

Section II-A and N-R method, to form concatenated 
Jacobi matrix and node power injection correction 
vector. Then, modified equations are obtained. 

• (f) CPU or GPU: According to the scale of modified 
equations, use a suitable approach to solve. 

• (g) CPU: Do converge judgement of N-R method 
using solutions in Step (f). If accuracy demand is 
satisfied, the algorithm is converged and exit the 
algorithm. Otherwise, correct iterative values. 

• (h) CPU: Let iteration times 1i i  . If the number 
has reached the maximum iteration times preset, the 
algorithm is not converged and exit the algorithm. 
Otherwise, go to Step (e). 

VI. CASE ANALYSIS 
IEEE standard cases as well as ‘BENCH’ (1648 nodes) and 

‘Coal 2005 NI TP’ (610 nodes) from PSS\E are taken as 
examples for test. The compiler is Microsoft Visual Studio 
2013 Update 3 and NVIDIA Nsight Visual Studio Edition, and 
the program runs on the Windows 10 of 64 bits. The CPU 
model in the test is Intel Core i7-7700K, with 4.20GHz master 
frequency and 32GB memory. The GPU model is NVIDIA 
GeForce GTX1080, supporting CUDA8.0. Set the maximum 
iteration times of N-R method to 10, and set the tolerance to 
0.01. The iterative method requires accuracy of 1e-6. 

A. Acceleration Effect Analysis of Parallel Formation of 
Jacobi Matrix 
Cmpare the computing time of the parallel formation with 

that of serial formation of the Jacobi matrices for every 
independent power flow problem. Data in Fig.2 is the average 
computing time of 10 times. 

 
Fig. 2. Acceleration effect analysis of parallel formation of Jacobi matrix 

As can be seen in Fig.2, the parallel formation method 
proposed in this paper has significant acceleration effect. 
Especially when the scale of system is large, such as Coal 2005 
NI TP and BENCH, the speed-up ratio can reach around 40 
times. In the N-1 security, it is necessary to form the Jacobi 
matrix for several times, and the acceleration effect of parallel 
formation can produce cumulative effect. 

B. Comparison of Computing Time of Different Methods and 
the Choice of Method for Solving Linear Equations  
The concatenated equations are solved by the direct method 

based on SuperLU library, or the iterative method based on the 
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Krylov subspace theory proposed in this paper, according to 
the scale of equations. Data in Fig.3 is the average computing 
time of 10 times. 

 
Fig. 3. Comparison of computing time of methods for solving linear equations 

According to Fig. 3, 35,000 is the dividing point of the 
computing time of these two methods. Moreover, the larger the 
scale of Jacobi matrix, the more obvious the advantage in 
speed of the iterative method. Therefore, 35,000 can be chosen 
as the cut-off point of direct method and iterative method. 

C. Overall Computational Efficiency Analysis of the Algorithm 
In order to test the overall efficiecy of the proposed 

algorithm, make a comparison between the algorithm proposed 
in this paper and traditional N-1 AC power flow algorithm 
(Solve every independent power flow problem one by one). 

 
Fig. 4. Comparison of computing time of traditional method and the algorithm 

proposed in this paper 
Fig.4 shows that the algorithm proposed in the paper can 

achieve significant acceleration. When the scale of system is 
large, the speed-up ratio is more than 100 times. Moreover, the 
larger the scale of system is, the more significant the 
acceleration effect of the algorithm proposed in the paper. 

D. Memory Footprint of the Algorithm 

TABLE I shows that, when the system has 1648 nodes, the 
peak value of RAM memory is only 1.69GB, and the peak 
value of GPU memory is 2.42GB, which a GPU with 4GB 
memory can support. 

TABLE I.  MEMORY FOOTPRINT OF THE ALGORITHM 

Cases 
Order of 

Concatenated Jacobi 
Matrix  

Peak Value of 
RAM Memory 

/MB 

Peak Value of 
GPU Memory 

/MB 

CASE118 32037 390.0 1606.0 

CASE300 169600 590.3 1606.0 

Coal 2005 164889 422.3 1606.0 

BENCH 2272284 1730.9 2478.0 

VII. CONCLUSION 
This paper proposed a real-time N-1 ACPF algorithm based 

on concatenation method and GPU-CPU computing framework. 
This algorithm has higher accuracy than DC power flow 
method and sensitivity analysis method. The concatenation 
method concatenates all the independent power flow problems, 
which means that N-R method will be used only once. GPU is 
used to parallelly process the formation of Jacobi matrix and 
iterative method for solving large scale linear equations, 
effectively improving the overall efficiency of the algorithm. 
Moreover, the algorithm needs small memory space, which can 
be supported by CPU and GPU equipped by a common PC. 
Therefore, this algorithm has engineering application value. 
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