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Abstract—Previous work has shown that robust state estimator
based on maximum normal measurement rate is accurate and re-
liable. However, in the existing algorithm, the optimal solutions
cannot be obtained due to the approximation of evaluation func-
tion. Besides, there are no noise-filtering effects on normal mea-
surements. To deal with these two problems, this letter presents an
improved algorithm to get a more accurate solution with higher
normal measurement rate. Numerical tests on different systems
show the proposed algorithm is efficient.

Index Terms—Normal measurement rate, robust state estima-
tion, uncertainty in measurement.

I. INTRODUCTION

Robust state estimator, which is capable of bad data rejection
in power system analysis, has been studied since decades ago.
Some novel robust state estimator based on measurement un-
certainty has been proposed in recent years. Gastoni, Granelli,
and Montagna proposed a robust estimator based on the max-
imum agreement between measurements [1]. Al-Othman and
Irving presented a new robust estimator based on maximum
constraints satisfaction (MCS) of uncertain measurements [2].
Irving then formulated state estimation as a mixed integer pro-
gramming problem and aimed at maximizing the number of es-
timated measurements that lie within the tolerances [3].
In our previous work, a robust state estimator based on max-

imum normal measurement rate (MNMR) is proposed [4]. The
relative deviation for measurement is defined as

, where is the measure function, is the measured
value, and is the expanded uncertainty of measurement . The
evaluation function is as follows:

(1)

If is 0, measurement is normal; otherwise, it is abnormal.
MNMR aims at finding a solution that maximizes the number of
normal measurements. In order to solve this problem, which is
inherently combinational, an approximated evaluation function
is proposed to model the problem as nonlinear optimal program-
ming, which leads to an approximate optimal solution. Besides,
the noises on normal measurements are not filtered since the
evaluation value of normal measurement is always zero.
To deal with these two problems, this letter proposes an im-

proved algorithm which consists of three steps. The first step
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is the approximate optimization step, in which a nonlinear op-
timal problem is solved to obtain an approximate optimal solu-
tion and a normal measurement set [4]. The second step is the
consistency checking step, in which each abnormal measure-
ment is checked whether there is a solution to make it consistent
with the measurements in the existing normal measurement set.
The third step is the noise filtering step, in which weighted least
square estimation with the inequality constraints of all normal
measurements are solved to filter the noises on normal measure-
ments.
Numerical tests on different systems show that a more accu-

rate solution with higher normal measurement rate can be ob-
tained by the proposed algorithm.

II. IMPROVED ALGORITHM FOR MNMR

A. Approximate Optimization Step

The details of this step are documented in [4] and will be
reviewed briefly below. An approximate evaluation function

is defined as follows:

(2)

where is a sigmoid function, defined as follows:

(3)

MNMR is modeled as a nonlinear optimal problem:

(4)

where represents power flow constraints and
represents physical constraints in practical operation.

By solving (4), an approximate optimal solution and a
normal measurement index set are obtained.

B. Consistency Checking Step

Define the set of all feasible state variables as

(5)

For an abnormal measurement , compute its possible range
in set by solving the following two optimal prob-

lems with regarded as the initial states:

(6)

(7)
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TABLE I
ABNORMAL MEASUREMENTS IN BOTH MNMR AND IMPROVED MNMR

If , it means there exists a
solution which makes measurement consistent with
all measurements in , then add to and form a new
set ; otherwise, measurement will always be abnormal.
Check every abnormal measurement in the same way to see

whether it can be added to normal measurement set. A new
normal measurement set is obtained, which is supposed to
be larger than . The checking process starts from the mea-
surement with smaller residual to the one with larger residual.
Since there are few abnormal measurements after the first step,
the checking process in this step is quite efficient.

C. Noise Filtering Step

To filter the noise on normal measurements, a weighted least
square state estimation with inequality constraints of all normal
measurements are formulated as follows:

(8)

where . By solving (8), a more accurate solution
with higher normal measurement rate is obtained.

III. NUMERICAL RESULTS

Firstly, three IEEE standard systems are tested. Full measure-
ments are configured in each system and Gaussian noise with
zero mean and variance of 2% of the nominal value is added to
the measured value. If a measurement is regarded as bad data,
an extra deviation of 20% of the nominal value is added to the
measured value.
The proposed algorithm, denoted as Improved MNMR, is

compared to the existing algorithm [4], denoted as MNMR. All
parameters relevant to the optimal model (4) are chosen the
same as [4]. Table I shows the abnormal measurements sets ob-
tained by both algorithms. We can see that in all cases, the im-
proved MNMR can get a solution with higher normal measure-
ment rate than MNMR, due to the consistency checking step.
Table II shows the index and defined in [4], which repre-
sents the distance between the estimated state and the true state.
We can see that the improved MNMR can get a more accurate
solution than MNMR, due to the noise filtering step.
Secondly, a real 272-bus system which is located in the east

of China, denoted as system SH, is tested. The uncertainty in-
terval of each measurement is determined according to the eval-
uation indices proposed by the power company. MNMR gets a

TABLE II
ACCURATE COMPARISON BETWEEN MNMR AND IMPROVED MNMR

TABLE III
COMPUTATION TIME FOR THE LAST TWO STEPS IN IMPROVED MNMR

solution with 104 abnormal measurements in all 1797 measure-
ments, while the improved MNMR gets a solution with only 73
abnormal measurements, which improve the normal measure-
ment rate from 94.21% to 95.94%.
The proposed algorithm is implemented with JAVA, while all

tests are carried on a personal computer with 2.0-GHz Intel (R)
Core CPU and 2 GB of RAM. Table III shows the computation
time of the added two steps in the improved MNMR. Since the
number of abnormal measurements is usually small, the com-
pute time added is affordable.

IV. CONCLUSIONS

This letter has presented an improved algorithm for robust
state estimation based on maximum normal measurement rate.
A consistency checking step is added to obtain a solution with
higher normal measurement rate, which is more reliable. Then
a noise filtering step is added to get a more accurate solution.
Since the number of abnormal measurements is usually small,
the compute time added is affordable.
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