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Robust State Estimator Based on Maximum
Normal Measurement Rate

Guangyu He, Member, IEEE, Shufeng Dong, Junjian Qi, and Yating Wang

Abstract—In this paper, the concept of normal measurement
rate (NMR) is defined based on the theory of uncertainty in mea-
surement and a robust state estimator named maximum normal
measurement rate (MNMR) estimator is proposed. Comparison is
made between the MNMR estimator and other robust estimators.
The robustness and precision of this estimator is tested with the
IEEE 14-bus, 30-bus, and 118-bus systems. Simulation results
show that the MNMR estimator is effective in identifying bad data
and is also time efficient.

Index Terms—Normal measurement rate, robust state estima-
tion, uncertainty in measurement.

I. INTRODUCTION

S TATE estimation is the basis of power system analysis
and control. Weighted least squares estimate has been

discussed in many literatures, such as [1]–[3], and has been
applied in many fields very successfully. It exhibits efficient
filtering capability when the errors are Gaussian, but is very
sensitive to bad data and may cause very poor estimates. In
order to guarantee the estimator to exhibit stable behavior under
deviation from the assumptions on which they are based, var-
ious robust estimators have been proposed, such as M-estimator
[4]–[14], GM-estimator [6], [13], [15], and high breakdown
point estimator [16]–[19].

M-estimator, generalized maximum likelihood estimator,
mainly include weighted least absolute value (WLAV) esti-
mator [7]–[11], quadratic-linear (QL) estimator [6], [13], [15],
and quadratic-constant (QC) estimator [6], [12], [14].

GM-estimator, generalized M-estimator, mainly include
Mallows-type GM-estimator [13] and Schweppe-type GM-es-
timator [6], [13], [15].

High breakdown point estimator, estimators with high break-
down point, mainly include least median of squares (LMS) es-
timator and least trimmed squares (LTS) estimator [16]–[19].

Apart from the above-mentioned methods, some novel
robust estimators have also been proposed in recent years.
Gastoni, Granelli, and Montagna proposed a robust estimator
based on the maximum agreement between measurements
[20]. Al-Othman and Irving presented a new robust estimator
based on maximum constraints satisfaction (MCS) of uncertain
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measurements [21]. In [21], they considered the uncertainty in
the measurement and modeled the uncertainty via deterministic
upper and lower bounds on measurement errors. Irving then
formulated state estimation as a mixed integer programming
problem and aimed at maximizing the number of estimated
measurements that lie within tolerance [22].

However, there are two limitations within the MCS estimator
and the latter mixed integer programming method. Firstly, an
estimate is found which fits the stated tolerance ranges and has
little or no noise filtering effect among the good measurements.
Secondly, they both require a heavy computational time burden
and are thus difficult to be applied to large-scale power systems,
although [22] has pointed out that mixed integer programs with
thousands of variables can now be solved routinely in less than
one minute.

In order to solve these problems, a new robust estimator based
on the maximum normal measurement rate (MNMR) is pro-
posed in this paper. Section II introduces the concept of uncer-
tainty in measurements and defines normal measure point and
normal measurement rate. Section III presents the problem for-
mulation of the MNMR estimator. Sections IV and V compare
the proposed method with non-quadratic methods and the MCS
estimator. Simulation results are presented in Section VI.

II. CONCEPT OF NORMAL MEASUREMENT RATE

In 1993, seven international organizations issued “Guide to
the expression of uncertainty in measurement” [23], in which
they defined uncertainty in measurement as parameter associ-
ated with the result of a measurement, which characterizes the
dispersion of the values that could reasonably be attributed to
the measurand. This concept reflects the possible distribution
range of the error and can be considered as the error limit under
certain confidence probability.

There are two kinds of uncertainties: standard uncertainty and
expanded uncertainty.

For standard uncertainty, uncertainty of the result of a mea-
surement is expressed as a standard deviation. From its defini-
tion [23], for measure point is the measurement, the stan-
dard uncertainty is denoted by , the probability that the true
value lies in the interval is taken as , as is
shown in (1):

(1)

If the uncertainty follows normal distribution, will be
68.3%.

Expanded uncertainty is interpreted as defining an interval
about the result of a measurement that may be expected to en-
compass a large fraction of the distribution of values that could
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reasonably be attributed to the measurand. The expanded uncer-
tainty is obtained by multiplying the standard uncertainty
by a coverage factor :

(2)

According to the definition of expanded uncertainty, for mea-
sure point is the measurement, the expanded uncertainty is
denoted by , the probability that the true value lies in the in-
terval is taken as , as is shown in (3):

(3)

If and the uncertainty follows normal distribution,
will be 99.7%.

It needs to be pointed out that expanded uncertainty is inde-
pendent of specific distribution and it is not assumed to follow
normal distribution.

In practical applications, is generally taken as a value sig-
nificantly greater than 0.5, such as 0.997 or 0.945, and then the
corresponding can be determined.

Since the true value lies in the interval
with a large probability, its potential estimation value also lies
in the interval with a large probability. In light of this, we de-
fine normal measure point, abnormal measure point, and normal
measurement rate.

Definition 1: Given the expanded uncertainty of measure
point under the confidence probability as is the state
estimation result, is the th measurement function, if (4)
is satisfied, then measure point is a normal measure point
under state estimation solution . Otherwise, it is an abnormal
measure point:

(4)

Definition 2: Suppose the number of measure points in the
system is , the confidence probability for all the measure
points is , the expanded uncertainty for measure point is

, and the number of normal measure points under the state
estimation solution is , then the normal measurement rate
(NMR) under the state estimation solution is defined as
follows:

% (5)

III. MAXIMUM NORMAL MEASUREMENT RATE ESTIMATOR

The MCS estimator [21] models uncertainty in the measure-
ment via deterministic upper and lower bounds on the measure-
ment errors and aims at finding a solution satisfying most in-
equality constraints.

Reference [21] has pointed out that a solution in the region
established by the uncertain bounds of measurements with
gross errors can never have a maximum number of satisfied
constraints that exceeds that of the region established by the
good measurements and thus the MCS estimator guarantees a
robust solution.

Based on this idea, we propose a robust estimator named
MNMR estimator. It aims at finding a solution that makes
the number of normal measure points maximum and thus the

Fig. 1. Figure of ��� �.

normal measurement rate. To achieve this, we first define the
NMR evaluation index.

A. Ideal NMR Evaluation Index

Given a system state , the relative deviation at measure point
can be defined as (6):

(6)

where , and are measurement, measurement func-
tion, and the expanded uncertainty at measure point . corre-
sponds to a confidence probability .

The ideal evaluation function of measure point is con-
structed as follows:

(7)

If measure point is normal is 0; otherwise,
is 1. is illustrated in Fig. 1.

We define , the summed evaluation function of all
measure points, as the ideal NMR evaluation index.

Obviously, a solution with the smallest ideal NMR evaluation
index has the highest NMR. So maximizing NMR can be con-
verted into minimizing the ideal NMR evaluation index.

B. NMR Evaluation Index in Practical Applications

In practical applications, measure point is not considered
as abnormal if is only slightly greater than 1. Only if
is considerably greater than 1, can the measure point be consid-
ered as abnormal. Thus, the evaluation function should be
approximate 0 when is less than or equal to 1 while should
be approximate 1 only when is greater than ( is a positive
constant considerably greater than 1, such as 2).

In light of this, we redefine the concept of normal and ab-
normal measure point in Definition 1 and also define the con-
cept of suspicious measure point.

For measure point , if or , it is
a normal measure point; if or , it
is an abnormal measure point; if or

, it is a suspicious measure point.
In this paper, the NMR evaluation function is defined

as follows:

(8)

where

(9)
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TABLE I
VALUES OF FUNCTION ��� �

Fig. 2. Figure of ��� � �� � ��.

The in (9) is actually a sigmoid function.
In order to make and , we select and

in the following way:

(10)

(11)

Therefore

The NMR evaluation index is correspondingly defined as the
summed evaluation function of all measure points .

The values of and as changes are shown in
Table I. It can be seen that when gets greater, is more
approximate to 0, is more approximate to 1, and thus

is more approximate to .
However, when is too great, it might cause difficulty in the

convergence of the optimization problem with as
objective function. Therefore, is taken as 3 in this paper.

Then the we really use is as (12):

(12)

In this case, when is 2, can be illustrated in Fig. 2. It
can be seen that is similar to but is continuous and
differentiable at every point.

C. Mathematical Model of the Proposed Method

Since is approximate to abnormal measure
points, to find a system state with the maximum number of
normal measure points is to a large extent equivalent to find

a system state with the minimal . Therefore, the
objective function of the proposed estimator is to minimize

for a given solution , as is shown in (13):

(13)

In practical power system operation, the system state should
satisfy power flow constrains and other physical constrains, such
as the limit of the outputs of generators. Considering these con-
straints, we construct the following state estimation model:

(14)

where represents power flow constrains and
represents physical constrains in practical operation.

D. Algorithm

Substituting in (1) into the objective function, we have the
following model:

(15)

This optimization problem can be solved with many methods,
among which modern interior point method [24] has many ad-
vantages, such as good convergence property, high computation
speed, and no significant increase of computation time with the
increased scale [25], [26].

We have successfully solved the proposed optimization
problem with IPOPT (Interior Point OPTimizer) [27], which
implements a primal-dual interior point algorithm. It has high
computation speed and good convergence property, which allow
us to apply the proposed state estimator to online engineering.

What needs to be pointed out is that the proposed optimiza-
tion model is nonconvex. Modern interior point method cannot
guarantee to find the global optimum of a nonconvex problem
and its solution is influenced by the start values.

In order to avoid the solution converging to local optimum to
the greatest extent, we perform a two-stage state estimation.

1) First Stage Estimation: In the first stage estimation, the
initial state is a flat start.

By calculating the second-order derivation of (12), we can get
the positive inflection point of the evaluation function (denoted
by ), which actually only depends on the value of and can be
written as

(16)

When the parameter of the MNMR estimator is set to be a
large enough positive number, the absolute value of the relative
deviation defined in (6) will be less than or equal to for all
measure points under the initial state.
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In this case, the evaluation function really used is actually a
convex function of the relative deviation, which makes it have
similar characteristics as the cost function of WLS and thus
makes the solving of the proposed optimization problem with
modern interior point method much easier.

In reality, there is no need or even inappropriate in some cases
to make the absolute value of the relative deviation less than or
equal to for all measure points. Too large in the first stage
estimation will make the first stage estimation almost entirely
lose bad data identification property. Therefore, in the first
stage estimation should be as small as possible as long as it
guarantees that the absolute value of the relative deviation is
greater than for only a small proportion of measure points. In
this paper, we choose the that makes the absolute value of the
relative deviation greater than for 10% of the measure points.

Specifically, we first calculate the relative deviation for all
measure points when the system state in (15) is a flat start
and then find the qth largest relative deviation where q is 10%
of the number of measure points. When 10% of the number of
measure points is not an integer, it is rounded up and assigned
to q. Finally, we choose as two times of the qth largest rela-
tive deviation minus 1 considering the relationship between the
positive inflection point and shown in (16).

2) Second Stage Estimation: In the second stage estimation,
the MNMR estimator takes the solution of the first stage esti-
mation as its initial state and chooses much smaller , such as
2, so as to guarantee the bad data identification property of the
estimator and thus to exactly find the bad data among measure-
ments.

IV. RELATIONSHIP AND DIFFERENCE BETWEEN THE PROPOSED

METHOD AND NON-QUADRATIC CRITERIA

As other non-quadratic criteria [5]–[14], especially as QC
method [6], [12], [14], the proposed evaluation function is also
the function of residuals and also assigns less weight to large
residue terms, which enables the proposed estimator less sen-
sitive to bad data and at the same time makes the optimiza-
tion problem more difficult to solve. Despite these similarities,
there are also some distinct differences between our method and
non-quadratic criteria.

1) The evaluation function in this paper is not only the func-
tion of residuals, but also the function of uncertainty in
measurement. It is the uncertainty in measurement that has
provided additional and valuable information about mea-
surements and thus has helped to improve the performance
of the estimator.

2) For non-quadratic criteria, when the residual is small
enough, the cost function is usually chosen as quadratic
function of the residual. However, in our method, we do
not aim at achieving an exact fit of measurements. Since
uncertainties inevitably exists in the measurements, it is
more reasonable to make the estimated value only within
a tolerance on the measurement.

V. COMPARISON WITH THE MAXIMUM CONSTRAINTS

SATISFACTION ESTIMATOR

The MCS estimator and the MNMR estimator both take into
account the uncertainty in measurements to realize a more ro-

bust state estimation. In reality, the MNMR estimator can be
considered as an approximation of the MCS estimator in some
sense, and thus has a similar bad data identification property as
the MCS estimator.

However, there are also at least four differences between the
MNMR estimator and the MCS estimator.

Firstly, different from the deterministic upper and lower
bounds adopted by the MCS estimator, the uncertainty in mea-
surement used in the MNMR estimator comes from [23] and
corresponds to the same confidence probability for all measure
points.

Secondly, the evaluation function we actually use allows the
MNMR estimator to have some noise filtering effect among the
good measurements because we introduce the concept of suspi-
cious measure point. Thus, the estimation results are more pre-
cise than the MCS estimator.

Thirdly, state estimation can be solved much more efficiently
in our method than the MCS estimator by using the modern inte-
rior point algorithm to solve a nonlinear programming problem.
This allows the application to large-scale power systems.

Fourthly, the MCS estimator applies genetic algorithm to
search the whole search space to find a global optimum, while
modern interior point method cannot always find the global
optimum in our method because of the nonconvex characteristic
of the MNMR estimator. However, after utilizing a first stage
estimation to provide initial state for the MNMR estimator, this
problem can be solved to a large extent.

VI. SIMULATION RESULTS

In this section, we test the MNMR estimator with IEEE
14-bus, 30-bus, and 118-bus systems, compare the MNMR
estimator with the QC estimator, and also discuss the influence
of the parameters of the MNMR estimator on state estimation
results. All tests are carried out on a 3.0-GHz Inter(R) Core
based personal computer and the proposed method is imple-
mented with JAVA by calling IPOPT to solve the nonlinear
programming problem.

Gaussian noise with zero mean and variance of 2% of the
meter reading is added to the measurements.

A. IEEE AC Example

In this section, the MNMR estimator is applied to the IEEE
14-bus, 30-bus, and 118-bus systems. In all of the following
cases, the expanded uncertainty in (15) is taken as 3 times
of the standard deviation of the measurements. In the first stage
estimation, the initial state is a flat start.

We choose in the first stage estimation by adopting the
method mentioned above and their values are shown in Table II,
where ratio is the proportion of measure points for which the
absolute value of the relative deviation is greater than the posi-
tive inflection point when the system state in (15) is the initial
state.

In the second stage estimation, is set to be 2 and the solution
of the first stage estimation is used as the initial state.

As [20], the set of conforming multiple bad data shown in
Table III was tested for the IEEE 14-bus system. The measure-
ments are the same as [20]. Reference [20] has pointed out that
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TABLE II
� IN THE FIRST STAGE ESTIMATION FOR DIFFERENT TEST SYSTEMS

TABLE III
CONFORMING BAD DATA FOR THE IEEE 14-BUS SYSTEM

TABLE IV
ABNORMAL MEASURE POINTS IDENTIFIED BY THE SECOND

STAGE ESTIMATION FOR IEEE 14-BUS SYSTEM

the largest normalized residual (LNR) method fails in this case
because of the conforming nature of the four bad data.

In the first stage estimation, 23 measure points as suspicious
measure points, and the others are all normal. In the second stage
estimation, exactly 4 bad data are identified as abnormal mea-
sure points and all the others are normal. The abnormal measure
points are listed in Table IV.

The MNMR estimator is also applied to the IEEE 30-bus
system. The measurements are the same with [28]. We add 6
bad data to the measurements, as are shown in Table V. The
flow measurements on 1–2 and the injection measurement at
bus 1 are interacting conforming bad data, and the flow mea-
surements on 24–25 and the injection measurement at bus 29
are noninteracting bad data [28].

The first stage estimation identified 3 abnormal measure
points and 33 suspicious measure points. In the second stage
estimation, exactly 6 bad data are identified as abnormal points
and all the other points are normal. The abnormal measure
points are listed in Table VI.

We also test conforming bad data with reference to the IEEE
118-bus system. The bad data are listed in Table VII.

In the first stage estimation, 24 measure points are identified
as suspicious and all the others are normal. In the second stage

TABLE V
BAD DATA FOR THE IEEE 30-BUS SYSTEM

TABLE VI
ABNORMAL MEASURE POINTS IDENTIFIED BY THE SECOND

STAGE ESTIMATION FOR IEEE 30-BUS SYSTEM

TABLE VII
CONFORMING BAD DATA FOR THE IEEE 118-BUS SYSTEM

TABLE VIII
ABNORMAL MEASURE POINTS IDENTIFIED BY THE SECOND

STAGE ESTIMATION FOR IEEE 118-BUS SYSTEM

estimation, exactly 4 bad data are identified as abnormal and all
the others are normal. The abnormal measure points are listed
in Table VIII.
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TABLE IX
TIMING RESULTS FOR THE THREE IEEE TEST SYSTEMS

TABLE X
COMPARISON BETWEEN MNMR ESTIMATOR AND QC ESTIMATOR

FOR THE 4 BAD DATA CASE OF IEEE 14-BUS SYSTEM

TABLE XI
COMPARISON BETWEEN MNMR ESTIMATOR AND QC ESTIMATOR

FOR THE 6 BAD DATA CASE OF IEEE 30-BUS SYSTEM

TABLE XII
COMPARISON BETWEEN MNMR ESTIMATOR AND QC ESTIMATOR

FOR THE 4 BAD DATA CASE OF IEEE 118-BUS SYSTEM

The number of iterations and calculation time for the above
test cases are shown in Table IX.

B. Comparison With the QC Estimator

In this section, we compare the two-stage MNMR estimator
with QC estimator [14]. The parameters of the QC estimator
are taken as the same value as [14]. The results are shown in
Tables X–XII. is the number of bad data identified by es-
timators. The index and defined by [14] are also listed.
Their definitions are as follows:

TABLE XIII
INFLUENCE OF � IN THE FIRST STAGE ESTIMATION

ON THE FIRST STAGE ESTIMATION RESULTS

Here is the number of buses, are the actual bus voltage
magnitude and angle at bus and are the estimated values.
(Voltages are measured per unit, angles in degrees.)

From Tables X–XII, we can see that the MNMR estimator
can identify bad data correctly in all the three cases while the
QC estimator fails. Especially in the IEEE 30-bus test case, the
QC estimator only identifies 3 bad data and incorrectly rejects
15 good data. The voltage and angle performance indices for
the MNMR estimator are usually better than or at least as good
as the QC estimator. For the IEEE 30-bus test case, there is a
distinct difference between the estimated angles and the true
angles for the QC estimator and the angle index is greater
than 30. However, the MNMR estimator can still estimate the
angles precisely and the angle index is still very small.

Besides, in the IEEE 14-bus test case, the QC estimator
wrongly identifies the correct measurement as bad data
because the bad data on and are consistent; similarly
in the IEEE 118-bus test case, the correct measurement is
identified as bad data due to the consistent property of the bad
data on and .

C. Influence of Parameters on the Results

In this paper, the expanded uncertainty in measurement and
the parameter in the second stage estimation are fixed. There-
fore, in this section only the influence of in the first stage esti-
mation will be discussed by taking the IEEE 30-bus with 6 bad
data case as an example.

In Tables XIII–XIV, ratio is the same as that in Section A.
The initial state in the first stage estimation is a flat start. The
initial state in the second stage estimation is the solution of the
first stage estimation.

, and are number of normal, abnormal, and suspi-
cious measure points.

From Table XIII and XIV, we can see that when in the first
stage estimation is too small, such as 10, ratio for the first stage
estimation is too high so that the first stage estimation cannot
obtain good solution with modern interior point method and thus
the estimation results of the second stage estimation are also not
satisfactory.
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TABLE XIV
INFLUENCE OF � IN THE FIRST STAGE ESTIMATION

ON THE SECOND STAGE ESTIMATION RESULTS

TABLE XV
INFLUENCE OF � IN THE FIRST STAGE ESTIMATION

ON TIMING RESULTS FOR IEEE 30-BUS SYSTEM

At the same time, when is too great, such as 100 in this
case, the estimation results of the second stage estimation are
not good, too. Although ratio in the first stage estimation is quite
low, the too large makes the evaluation function of the first
stage estimation too flat to lose too much of the bad data iden-
tification property.

Only when ratio for the first estimation is low and is not too
great, such as 35, 39.2948, or 65 in this case, can the state esti-
mation results of the two-stage estimation be good. Fortunately,
the final estimation results are not sensitive to in the first stage
estimation. For the IEEE 30-bus with 6 bad data case, the pro-
posed estimation method can exactly reject bad data when in
the first stage estimation ranges between 24 and 99. For values
of in this interval, the estimation results are almost the same
and the main difference lies in the calculation time.

The influence of in the first stage estimation on the timing
of IEEE 30-bus case is shown in Table XV. It is obvious that too
large and too small both lead to more iterations and longer
calculation time.

VII. CONCLUSION

In this paper, a robust estimator is proposed based on the con-
cept of normal measurement rate and the MCS estimator.

Similar to the MCS estimator, the MNMR estimator has
distinct robustness, which has been successfully demonstrated
through different IEEE AC examples and comparison with the
QC estimator. This is because no exact fit of measurements is
required and the MNMR estimator only seeks to find a solution
with the highest normal measurement rate.

At the same time, the MNMR estimator overcomes the limi-
tation of the MCS estimator to a large extent.

Firstly, the MNMR estimator has some noise filtering effect
among the good measurements because we introduce the con-
cept of suspicious measure point.

Secondly, the MNMR estimator formulates the state estima-
tion as a nonconvex nonlinear optimization problem and solves
this problem with modern interior point method, which results
in high computational efficiency and allows the application to
large-scale power systems.

The main problem of the MNMR estimator lies in its non-
convex property, which causes difficulty in finding the global
optimum for the modern interior point method. In this paper,
this problem is dealt with by using a two-stage estimation.
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